Generating Coherent Timelapse Videos from a Semi-Structured Latent Space

Rory Little
Western Washington University
516 High st. Bellingham, WA

littlerd4@wwu.edu

Avery Le

len22@wwu.edu

Abstract

Timelapse videos often bear problems such as jittering,
sudden dramatic changes without transition, and at the
highest speeds, periodic flashing. All of these undesirable
artifacts are due to the sampling method in which time-
lapse videos are traditionally constructed. Our goal is to
develop video generation techniques to synthesize idealized
timelapse videos that are free from these artifacts. Given a
long term video capture source, we propose a model which
can generate coherent timelapse videos of that source while
displaying content from only a chosen set of timescales.
Current video generation techniques use RNNs or similar
architectures to perform an iterative, next-frame predictive
approach to video generation. Our model instead uses con-
trastive learning to build a semi-structured latent space or-
ganized by timescales for each input video. Interpolation
in the latent space then allows us to generate videos, while
masking in the latent space allows us to filter undesirable
frequencies for the videos.

1. Introduction

Timelapse videos are a nice way to visualize the passage
of time in a scene. A key desire when viewing these videos
is to see changes on a faster timescale than they would nor-
mally occur. However, the quality of this visualization de-
pends heavily on the method used to generate the timelapse.

A classic method for generating timelapses is to simply
sub-sample a source video at a fixed rate. While this does
achieve the desired result of seeing longer term changes
occur at a faster rate, the faster changes occurring in the
video still exist in the timelapse, and having only been sped
up. The result is a jittery experience, where changes occur-
ring at higher frequencies still dominate the visual space
of the timelapse. What we implicitly would like to see
when creating and viewing timelapse videos is lower fre-
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quency changes in the source video scaled up to a higher,
more human scale frequency, with the high frequencies
from the source video being filtered out, rather than being
up-sampled as well.

In the context of generating variable scale timelapse
videos, current methods tend to fall short in a few key areas.
Generally, we would like our generated videos to satisfy the
following criteria:

1. The model should be able to generate arbitrary frame-
to-frame time steps, as the time between frames of a
lapse video is variable and depends on the scale of the
timelapse, length of the video and frame rate of the
video.

2. The model should be able to follow a coherent se-
quence of events from beginning to end (ie. when the
sky gets dark, street lights should turn on).

3. Changes that occur at frequencies too high relative to
the scale of the timelapse should not be included in the
video (ie. changes at the scale of people walking or
cars driving should not be seen by a quick timelapse
video which represents several hours of footage).

Our proposed model satisfies these criteria, and is able to
generate plausible timelapses from a variety of fixed camera
scenes. In addition, we propose a variety of editing meth-
ods for changes at differing timescales, such as generating
videos containing multiple timescales normalized to a hu-
man viewable frequency, and the insertion of objects into
times that they were not originally a part of.

Our method utilizes recent advancements in deep learn-
ing in applying structure to an embedding space in order
to facilitate our editing controls. In our embedding space,
timescales become “disentangled” into separated bins, al-
lowing us to independently manipulate objects that change
in those timescales. We limit ourselves to source material
from fixed-camera, long-term capture videos. These types



of videos are ideal for visualization of change via timelapses
because the only changes that occur in the video are due to
changes in the scene, not due to changes in perspective or
movement of the camera.

2. Background and Related Work
2.1. Temporal Gaussian Pyramids

Swift et al. developed a method to visualize changes
at various timescales in fixed-camera, long-term capture
videos [[10]. In this work, a sequence of temporal gaus-
sian pyramids are generated by blurring subsequent frames
across the time dimension, thereby filtering out high fre-
quency changes by smearing the changes across many
frames. This blurred result is then subsampled to gener-
ate the next layer of the pyramid. In their work, they found
that a similar supersampling method can be used to generate
timelapse videos without frequencies past a specific thresh-
old. However, there are several limitation for this technique.

For one, the method requires quite a large amount of data
and computation time to generate a single video, as gener-
ating a single frame requires the computation of an expo-
nentially growing number of frames from lower temporal
gaussian pyramids. The method also, due to its temporal
blurring, contains some artifacts at larger timescales, such
as a permanent twilight look due to the averaging of day
and night frames. A further limitation from this method is
that all timelapse videos that it can generate are derived di-
rectly from a Gaussian pyramid; novel compositions within
the scene are not able to be synthesized, as each time-
lapse frame is firmly derived from existing frames. Due to
these limitations, and the very repetitive nature of the fixed-
camera videos, it should be possible to both represent the
changes with much less data, and learn to perform a similar
task using deep learning.

2.2. Generative Video Models

Recent advances in generative image models ([6], [12])
have led to remarkable results in many sub-domains, such as
video generation([[13]], [S]]). While these models have stun-
ning results to look at, they tend to be limited for generat-
ing timelapse videos by a few pitfalls. Some models rely
on a next-frame predictive architecture, where a single or
limited sequence of frames is generated from a window of
pre-existing context. A common problem with these mod-
els is that they have no overarching direction and struggle
to generate sequences over longer periods of time.

A known solution to the above problem, used by other
video generation models, is to first select several guiding
points throughout the video, in order to add a “plot” to the
generated video ([9], [[L1]]). While this approach has seen
success at generating arbitrary length videos, there tends
to be a disconnect between the overall guiding structure of

the video and the local frame generation, leading to abrupt,
non-coherent changes when analyzing the overall trajectory
of the video.

2.3. Timescale Disentanglement

The idea for and method of disentangling the representa-
tions of various timescales in some latent space is a recent
innovation by Kovac et al. [[7] [ﬂ We build on this work and
its applications, and give a brief overview here.

Kovac et al. train an autoencoder to encode frames from
some input video into a sequence of bins so that, if an ob-
ject in a frame changes in the original video at frequency f,
the information in the encoded form of that frame needed
to reconstruct that object should be located in bing, where
s < log f < s+ 1. In other words, bin s of the encoded
form should represent information relevant to frequencies
from exp(s) to exp(s + 1). The current method to create
this encoded structure relies on two separate terms in the
loss function of the autoencoder. The structure of the au-
toencoder is such that an image x is encoded into a com-
pressed form w, a set of M bins, each retaining two spatial
dimensions and a channel dimension.

The first term of the loss function is designed to enforce
separation of frequencies into bins via a contrastive[1] loss.
The general idea for this term is that we would like the em-
bedded forms of images that are some temporal distance
apart to be similar in specific bins. These specific bins are
those that encode frequencies greater than that temporal dis-
tance between the images. To compute this loss, we sweep
across all binned frequencies, specifically sampling positive
examples for each frequency, and considering all other ex-
ample images to be negative examples for that frequency.

First, we need a metric for measuring the similarity of
two latent codes w; and w; derived from images x; and z,
judging them by how similar their encodings are of frequen-
cies at or below some threshold f. As such, let w? be the
embedded code w masked to zero out all bins representing
frequencies higher than f. The metric for comparing the
similarities of two embedded forms is

w! - w!
. K3
sim(wi, wy, f) = ——I ey

the cosine similarity of the masked latent codes. Cosine
similarity is chosen so that variance in the magnitude of the
expression of different features is not punished, as it is only
necessary that the features are expressed in a similar way.
This similarity measure is used to apply a contrastive
loss, with an attractive force given to bins whose timescales
are similar, and a repulsive force given to those that are
different. A positive pair, x; and x; are chosen such that
f = |t; — t;| for respective in-video timestamps ¢; and ¢,
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of the frames. While the positive example is explicitly sam-
pled, all other images in the mini-batch of N images are
considered to be negative examples when compared to x;.
The contrastive loss term for a mini-batch of NV items at a
frequency f is then

exp(sim(w;, wj, f)/7)

lejzl Ty exp(sim(w;, wy, f)/7)
2

A second term in the loss function encourages similarity
between input images 2/ from some frequency level of a
temporal Gaussian pyramid, and reconstructed images 27,
which are derived from masked latent codes w. This sec-
ond term in the loss,

‘Cc(waimja f) = _log
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both drives actual reconstruction of the input images (a typ-
ical autoencoder task), and also ensures that enough infor-
mation to reconstruct some limited form of the scene is
stored in a subset of the latent bins. Both L; and multi-
scale structural similarity[[14]] are used as distance metrics
in this term, to enforce both pixel-to-pixel and structural re-
constructive accuracy. The mix between these two evalua-
tions of image distance is controlled by the hyperparameter
o. A sequence A¢ is also used to control how much each
frequency contributes to the overall loss, with more weight
being placed on reconstructions of higher frequencies.

Combined, and appropriately averaged, these two terms
craft a loss function which can properly disentangle the
timescales of a video, and in the process enforcing a struc-
ture on the latent space of the autoencoder.

3. Timelapse Video Generation

Once disentangled, the latent space w now has a few key
properties desirable for generating timelapse videos. For
one, most animated objects in a scene now are categorized
in their latent representations by the frequencies at which
they change. This means that two new editing controls are
available for individual image reconstructions:

1. Specific frequencies can be masked out of an image
at will, yielding the option to remove arbitrary objects
from a scene.

2. Specific frequencies can be substituted into a scene,
yielding the option to populate a frame with objects
taken from a different frame of the source video.

Additionally, Kovac et al. [7] also note that the disentan-
gled latent space is much smoother in the path drawn by en-
coding sequential frames from a source video. Due to this,

there is less error when approximating intermediate frames
between a start and end goal than there would be in an un-
structured model.

While these controls only edit individual frames at a
time, we find that they can be applied to sequences of la-
tent codes to generate coherent video editing controls. The
key to creating a timelapse, then, is finding a sequence of
latent codes to use.

3.1. Approximating Gaussian Pyramids

Due to equation 2} we can directly attempt to reconstruct
the timelapse results of [10] with a fraction of the data and
computational cost. We can use the following simple pro-
cedure: subsample frames uniformly from a source video,
encode those subsampled frames through the timescale dis-
entanglement autoencoder, mask undesirable frequencies
from the latent codes, and finally reconstruct the masked
frames. This method is the most “honest” - frames in the
generated timelapse are the direct result of real intermedi-
ate frames between some start and end points in the source
video. However, we are able to use additional benefits of
the smoothness of the latent space to generate a sequence
of intermediate frames without needing to directly sample
those intermediate frames.

3.2. Latent Interpolation
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Figure 1. PCA projection of sequential w representations to three
dimensions of our (1) Bryant Park, (2) Rane, and (3) Geiranger
datasets. Points are sampled uniformly along a 24 hour time span,
with color indicating the progression of time.

Interpolating between two points w; and w- in a gener-
ative model’s latent space is known to have interesting and
useful results [3]]. Using this technique, we can generate in-
termediate latent points after only retrieving start and end
points using the encoder (see figure [2). This does, how-
ever, leave us with artifacts related to the crude interpolation
technique.

There are still artifacts familiar to standard autoencoder
design, such a crossfading effect of objects that change at
higher frequencies. While these artifacts can be somewhat
hidden through latent masking, the use of this technique is
still limited, as intermediate frames in even mid to low fre-
quencies do not necessarily match their real-video-sampled
counterparts. This is due to the nonlinear nature of the ar-
row of time in the latent space, and the complex paths that
a forward temporal motion weaves.
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Figure 2. Our model for synthesis of intermediate frames via interpolation. A pair of input frames are encoded into a disentangled
embedding space w, before being masked to remove high frequencies. The masked end points are then interpolated and pointwise decoded

to produce a sequence of frames for a timelapse video.

In figure [T] we plot the results of encoding sequences of
frames from our videos into the latent space. It is clear that
the forward direction of time does not correspond directly
to a linear change in the space. Instead, points in the latent
space tend to meander in circular motions around the origin.
These paths are complex and sometimes seemingly random,
indicating that further nonlinear transformations of the la-
tent would be required in order to create a space ready for a
nice interpolation. While we are not able to perfectly mimic
these paths right now, we can create better approximations
of the paths by using spherical interpolations, rather than
the linear interpolations used in standard generative exam-
ples. We also justify the use of spherical interpolation due
to how it better matches the similarity metric from equation
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Figure 3. Different frequencies sampled at different scales in the
latent code, with higher frequencies being sampled at higher rates,
and lower frequencies being sampled at lower rates. The direction
of time between the latent codes here is down, and colors indicate
the flow of time from the source material.

3.3. Multiscale Video Generation

We can also perform summarizations of a scene in the
style of [13]], due to our ability to swap binned frequen-
cies. The procedure here is also fairly simple - we perform
our latent subsampling to create sequences at different time
scales - sampling the high frequencies at a normal rate, but
sampling other frequencies at lower rates to bring their en-
ergy up to match the highest frequencies, as seen in figure 3}
In this way, we can display multiple timescales in a single
timelapse.

We find that for this method, it is necessary to perform
the high frequency sampling using subsampling from the
source video, as described in section @ While interpola-
tion does perform well at tracking lower frequency changes,
the most local structure of the passage of time in the latent
is still extremely jittery, and so relying only on interpolation
fails to yield coherent results.

4. Results

Our method of timelapse video generation is able to suc-
cessfully generate coherent timelapse which fit our earlier
criteria. Both methods for sampling intermediate latent
codes generate good-looking videos, although a few key
differences should be noted. The main difference between
the two is the difficulty of interpolation at capturing com-
plex high frequency motions. However, another difference
exists in how scenes gradually change over time. For ex-
ample, in figure 5] a sunset period is skipped, as day fades
directly into night. A clear juxtaposition of the differences
between the two methods is in figure @ where the video-
sampled frames differ significantly from the interpolated
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Figure 4. Three techniques for creating timelapse videos.
Top: Traditional subsampled frames from a source video.

Middle: Same frames as the above, but encoded, masked to eliminate high frequencies, and reconstructed.
Bottom: Frames interpolated between start and end points.

frames. However, these differences only are clear when
viewing the methods two side by side, and in both dataset
examples, the timelapse generated by interpolation would
be considered coherent on its own.

We do run into some problems with reconstructing
movements at high temporal frequencies, such as the mo-
tion of people walking, or cars driving by. This is due to
numerous issues, such as the bottleneck of information in
the latent space and limitations of the autoencoder. The
main problem is with generating high frequency changes,
as noted earlier, is that at the smallest scales, the latent
space still is not very smooth, and so simple interpolation
methods fail to capture natural looking changes. However,
mid-frequency movements, such as a boat turning, or low
frequency movements, such as a day/night cycle, are recon-
structed well by our method.
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Figure 5. Interpolation transitioning from day to night in Rane.

The results of our multiscale video generation are less
promising. While some success has been seen here, results
do lack in fidelity due to some leakage of information be-
tween representations of timescales. For example, in figure
we see a man only partially reconstructed in the center
of the frame, due to leaking of his representation into lower
frequency sections of the latent space. In a better case, we
try a similar experiment in Bryant Park in figure[6] attempt-
ing to show skaters moving at a normal speed while shifting

day into night. While there is some success here, clearly
the time of day has not fully transitioned. This is again
due to leakage between frequency bins, this time where the
high frequency portions of the latent code containing the
ice skaters also encode information about the time of day,
making it impossible to swap them fully into a night scene.

5. Future Work

While our method for timelapse video generation yields
good results under certain conditions, there is more that
could be done. Learning to generate the paths seen in figure
[[] would yield substantially better results in generating low
and mid frequency changes without sampling frames, and
provide more insight into how the timescale autoencoder
represents the linear passage of time. Additionally, further
improvements in the autoencoder itself could greatly bene-
fit the generation of videos using it. Particularly, improving
the smoothness of the path through the latent space even
more would assist greatly in correctly interpolating across
high frequency changes, and could possible lead to insights
for full blown video synthesis.

There is also space here for novel video generation.
While the latent space of the autoencoder has a strict struc-
ture, and is not able to be randomly sampled directly, sev-
eral recent architectures ([4], [2]) to enable the sampling of
latent spaces of pre-trained autoencoders could be used to
enable video synthesis without fixed start and end points.

We have attempted work on using a simplistic Varia-
tional Autoencoder [8] for these purposes, using an ar-
chitecture where we encode the latent w space from the
timescale disentanglement autoencoder into a second latent
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Figure 7. Failure to swap a man into the center of the frame due to leakage between bins.

space (z), whose distribution when encoding and decode
video frames from our video source is Gaussian. This archi-
tecture would allow for arbitrary sampling from the z latent
space without the need for fixed start and end latent codes
encoded from real video frames. In addition, the non-linear
relationship between w and z spaces could have benefits for
interpolation, as straight lines in z space may follow the ar-
row of time in w space more accurately. We would like to
try a two tiered architecture, where coarse latent codes are
sampled from an interpolation in z space, and are then fur-
ther interpolated in w space to provide better control over
fine details.

6. Conclusion

We have demonstrated the use of a semi-structured latent
space in generating timelapse videos. Our method used the
benefits of having disentanlged timescales in a latent space
to enable the masking of unwanted frequencies to aid in cre-
ating better quality timelapse videos. We also put forward
techniques for latent interpolation to further automate the
video generation process with less input information. Our
use of a semi-structured latent space to enable editing con-
trols in the video generation process is novel in the field of
computer vision, and is the first application of such a tech-
nique.
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